Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 28(47): 475204, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-28956534

RESUMO

Carrier transport in layered transition-metal dichalcogenides is highly sensitive to surrounding charges because of the atomically thin thickness. By exploiting this property, we report a new internal current amplification mechanism through positive feedback induced by dielectric hole trapping in a MoS2 back-gate transistor on a tantalum oxide substrate. The device exhibits an extremely steep subthreshold slope of 17 mV/decade, which is strongly dependent on the substrate material and drain bias. The steep subthreshold slope is attributed to the internal current amplification arising from the positive feedback between hole generation in MoS2 triggered by large lateral electric field and Schottky barrier narrowing induced by localized hole trapping in tantalum oxide near the source contact.

3.
Nat Commun ; 6: 8963, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26603335

RESUMO

A robust valley polarization is a key prerequisite for exploiting valley pseudospin to carry information in next-generation electronics and optoelectronics. Although monolayer transition metal dichalcogenides with inherent spin-valley coupling offer a unique platform to develop such valleytronic devices, the anticipated long-lived valley pseudospin has not been observed yet. Here we demonstrate that robust valley-polarized holes in monolayer WSe2 can be initialized by optical pumping. Using time-resolved Kerr rotation spectroscopy, we observe a long-lived valley polarization for positive trion with a lifetime approaching 1 ns at low temperatures, which is much longer than the trion recombination lifetime (∼10-20 ps). The long-lived valley polarization arises from the transfer of valley pseudospin from photocarriers to resident holes in a specific valley. The optically initialized valley pseudospin of holes remains robust even at room temperature, which opens up the possibility to realize room-temperature valleytronics based on transition metal dichalcogenides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...